Reference Hub2
Fenômica: A Computer Vision System for High-Throughput Phenotyping

Fenômica: A Computer Vision System for High-Throughput Phenotyping

Marcos Roberto dos Santos, Guilherme Afonso Madalozzo, José Maurício Cunha Fernandes, Rafael Rieder
Copyright: © 2020 |Volume: 11 |Issue: 1 |Pages: 22
ISSN: 1947-3192|EISSN: 1947-3206|EISBN13: 9781799806936|DOI: 10.4018/IJAEIS.2020010101
Cite Article Cite Article

MLA

Roberto dos Santos, Marcos, et al. "Fenômica: A Computer Vision System for High-Throughput Phenotyping." IJAEIS vol.11, no.1 2020: pp.1-22. http://doi.org/10.4018/IJAEIS.2020010101

APA

Roberto dos Santos, M., Madalozzo, G. A., Fernandes, J. M., & Rieder, R. (2020). Fenômica: A Computer Vision System for High-Throughput Phenotyping. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 11(1), 1-22. http://doi.org/10.4018/IJAEIS.2020010101

Chicago

Roberto dos Santos, Marcos, et al. "Fenômica: A Computer Vision System for High-Throughput Phenotyping," International Journal of Agricultural and Environmental Information Systems (IJAEIS) 11, no.1: 1-22. http://doi.org/10.4018/IJAEIS.2020010101

Export Reference

Mendeley
Favorite Full-Issue Download

Abstract

Computer vision and image processing procedures could obtain crop data frequently and precisely, such as vegetation indexes, and correlating them with other variables, like biomass and crop yield. This work presents the development of a computer vision system for high-throughput phenotyping, considering three solutions: an image capture software linked to a low-cost appliance; an image-processing program for feature extraction; and a web application for results' presentation. As a case study, we used normalized difference vegetation index (NDVI) data from a wheat crop experiment of the Brazilian Agricultural Research Corporation. Regression analysis showed that NDVI explains 98.9, 92.8, and 88.2% of the variability found in the biomass values for crop plots with 82, 150, and 200 kg of N ha1 fertilizer applications, respectively. As a result, NDVI generated by our system presented a strong correlation with the biomass, showing a way to specify a new yield prediction model from the beginning of the crop.